Gabrielle Rudenko

Drugging the Redox Switch in the Transcription Factor ΔFosB - a potential therapeutic target for neuropsychiatric and neurological disorders.

 Δ FosB is an unusually stable transcription factor that accumulates uniquely to very high levels in specific regions of the brain following insults such as chronic exposure to drugs of abuse. Δ FosB accumulation drives locomotor responses to drugs of abuse, drug reward, drug self-administration and relapse. Δ FosB also accumulates in brain in response to Alzheimer's disease where it contributes to cognitive decline, and Parkinson's disease where it is involved in mediating dyskinesia. Δ FosB is an attractive drug target. However, it is also a highly challenging one because it lacks typical 'druggable' molecular features like a deep active site found in enzymes, and because it is generally difficult to identify compounds that can interfere with DNA binding. In addition, the molecular basis for Δ FosB action is not understood well yet.

We are delineating the molecular mechanism of Δ FosB and de-risking Δ FosB as a highly novel drug target. We have characterized molecular and structural features of Δ FosB, in particular its DNA binding site, and discovered a redox switch that controls DNA binding. The redox switch renders Δ FosB susceptible to small molecule binding, and we have leveraged it to identify compounds that disrupt Δ FosB's ability to bind to DNA, demonstrating that Δ FosB is indeed 'druggable'. By manipulating Δ FosB with small molecules, it may be possible to exert selective effects on gene transcription, and guide neural and behavioral outcomes in a therapeutically beneficial manner, for example, following exposure to drugs of abuse. We will report on our recent progress.